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Disclaimer 
 

 

 

 

US FDA Disclaimer: This Research Collaboration Agreement has been developed between 

the US FDA and Leadscope, Inc. and does not explicitly state or imply that the US FDA 

endorses, recommends, or requires the use of this product or any other Leadscope, Inc. 

product. 

 

Leadscope® Model Applier containing (Q)SAR models developed under the US 

FDA/Leadscope, Inc. Research Collaboration Agreement do not necessarily reflect the US 

FDA’s current regulatory position on any given compound.  Furthermore, no training set 

data that are supplied by stakeholders and interpreted by US FDA scientists and 

contractors in the review of submissions to the US FDA have been included in this product.  

 

Leadscope hereby specifically disclaims liability for any and all adverse consequences or 

effects of any nature, which arise, may arise, or may be considered to have arisen, as a 

result of using this software application, Leadscope® Model Applier, by any person in the 

creation of any type of new drug or pharmacological product or substance. 

 

Leadscope® Model Applier and the related prediction data may not be used for any 

purpose outside Licensee’s internal use.  Licensee agrees not to redistribute or export the 

results from the Leadscope Model Applier to any country to which such export or 

transmission is restricted by applicable U.S. regulation or statute.  Licensee agrees not to 

redistribute or export training set structures and/or data from the Leadscope Model 

Applier. Licensee agrees not to publish any prediction results from the Leadscope Model 

Applier over the internet or journal articles without the prior expressed written consent of 

Leadscope.  Leadscope and U.S. Food & Drug Administration disclaim any liability for any 

damages, whether direct, indirect, special, incidental or consequential arising from 

Licensee’s use of the Leadscope Model Applier or any results generated there from.  

Portions of Leadscope Model Applier and data are copyrighted © Copyright 2017, U.S. 

Government.  All rights reserved. 

  



Leadscope Model Applier 2.2 
 

 

2  

 

 

 

 

Table of Contents 

 

 

 

A. General Description ..................................................................................... 3 

  

B. Suites and Models 

 

 1. Rodent Carcinogenicity Statistical Suite ................................................ 5 

 2. Genetic Toxicity Statistical Suite............................................................ 6 

 3. Reproductive Toxicity Statistical Suite .................................................. 9 

 4. Developmental Toxicity Statistical Suite.................................................9 

 5. Neurotoxicity Statistical Suite ................................................................11 

 6. Human Adverse Cardiac Effects Statistical Suite ...................................12 

 7. Human Adverse Hepatobiliary Effects Statistical Suite .........................13 

 8. Human Adverse Urinary Tract Effects Statistical Suite .........................14 

      9. Genetox Expert Alerts Suite ...................................................................15  

 

C. Model Applier  

  

 1. Loading a Test Set ..................................................................................17 

 2. Managing Test Set ..................................................................................18 

 3. Reviewing Prediction Models and Expert Alerts ....................................18 

 4. Applying Models and Expert Alerts .......................................................24 

 5. Explaining Prediction Results .................................................................33 

 6. Reviewing Prediction Results .................................................................41 

      7. Browsing Analogs in Leadscope Databases…….…………………......41 

      8. The Regulatory Submission Tool…………………………………...…44 

 

Appendix A: Organic and Inorganic Salts..…………………………………..45 

 

References…...……………………………………………………………......51 

 



Leadscope Model Applier 2.2 
 

 

3  

 

  

 

 

A. General Description 
 

 

The Leadscope
®
 Model Applier provides easy-to-use (Q)SAR models and expert alerts to obtain 

decision support information on the potential toxicities of chemicals. All the (Q)SARs were 

constructed at the Food and Drug Administration (FDA) by the Division of Applied Regulatory 

Science (DARS), previously known as the Division of Drug Safety Research Staff. The models 

were built under a Research Collaboration Agreement (RCA) using the Leadscope Prediction 

Data Miner software. The training data sets were compiled by DARS; complete documentation 

of the weight of evidence methodology used for the preparation of the model training sets and 

the sources of the data have been published by the DARS group [1-22,26-29]. In this document, 

these (Q)SAR models will be referred as “RCA models”. Prediction modeling methodology 

employed in Leadscope Prediction Data Miner for both binary and continuous data is described 

in the literature [22].  The Leadscope Genetox Expert Alerts were constructed by Leadscope [23]. 

 

The RCA (Q)SAR models were built from public information and include the training set 

structures and calls as part of the model description. The RCA models are implemented with 

molecular descriptors that include structural features and up to 8 calculated properties. The 

structural features include selected Leadscope
® 

default hierarchy features plus the predictive 

scaffolds generated with default settings. The eight calculated properties include parent 

molecular weight, parent atom count, LogP, polar surface area, hydrogen bond acceptors, 

hydrogen bond donors, number of rotational bonds and, Lipinski score (rule violation). More 

details are presented in the section C-3. 

 

In version 2.1, there are eight suites containing RCA (Q)SAR models with over 80 biological 

endpoints. The suites can be divided into two major groups of endpoint models: 1) human 

clinical endpoints; and 2) non-human toxicity endpoints. The first group includes three suites of 

models which predict the effects of pharmaceuticals based upon human clinical data, including: 

adverse cardiac effects, adverse hepatobiliary effects, and adverse urinary tract effects. The 

second group includes five different suites, predicting toxicities of organic chemicals based upon 

results of in vivo animal toxicity and in vitro studies. They include: carcinogenicity in rodents, 

genetic toxicity (i.e., mutagenicity and clastogenicity), reproductive toxicity in male and female 

rodents, developmental toxicity (i.e., dysmorphogenesis, fetal development, and survival of the 

rodent fetus), and neurotoxicity in newborn rodents. The majority of the (Q)SAR models are 

specifically designed to provide decision support information for toxicological and clinical 

endpoints that are considered important in the safety analyses of FDA-regulated substances. 

However, the Model Applier also includes a subset of models that have proven to be useful for 

research on toxicological properties of chemicals, but are not used internally within the FDA to 

support regulatory decisions. 

 

Each suite has many different RCA (Q)SAR models for individual endpoints and they are 

designed to be used in sets to make predictions of specific chemical toxicities.  For some toxicity 
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endpoints, sub-models are constructed to improve the predictive performance of the models. The 

predictive performance of global models depends highly on the ratio of actives (toxic) to 

inactives (non-toxic) chemicals in a training set. A training set was divided to subsets to maintain 

optimal active-to-inactive (A/I) ratio to balance high sensitivity with high specificity. The 

rationale behind these RCA models is that predicting true negatives must be maximized while 

false negatives must be minimized in product safety analysis within the regulatory agencies. 

Sometimes several sub-models are built for each model at the optimal A/I ratio as part of an 

“Average Model”. For best results, Leadscope runs each of the sub-models behind the scene and 

displays an overall result. The overall prediction results are based on averaging the probabilities 

(likelihood of being positive) from appropriate sub-models. The statistics of overall models are 

listed in the next section B. The overall models as well as sub-models are available for review in 

the “Review a predictive model” wizard. More details are available in Section C-3. 

 

The prediction results for each model are presented as the “prediction” and the “positive 

prediction probability”. The prediction can be “Positive”, “Negative”, and “Not-In-Domain”. 

The positive prediction probability is given as the likelihood value between 0 (non-toxic) and 1 

(toxic). If the prediction was a result of using existing experimental data, the word is a hyperlink 

which links to the found data (e.g. Positive). The higher the probability is, the greater chance of 

the test chemical being toxic in a particular endpoint. For most models, a test chemical is 

evaluated as active for a set of models (e.g., mouse composite) if the average probability is ≥0.5 

and inactive if the average probability is <0.5. The exceptions are the Genetox Salmonella and E. 

coli AT models where the accepted cutoffs are inactive <0.4 and active ≥0.6. As or version 2.2, 

the models themselves contain the correct cutoff settings and the user no longer has to set them. 

Test chemicals outside the domain space of the models are so noted. The model domain is 

defined within the Leadscope application by two criteria: 1) the test compound containing 

structural model features in addition to property descriptors; 2) the test compound being similar 

to at least one training set compound (with at least 30 % similarity). More details can be found in 

the references cited in Section D. 

 

As of version 1.6, the Leadscope SAR Genetox and SAR Carcinogenicity Databases were 

provided with the purchase of those model suites respectively in Leadscope Model Applier and 

Leadscope Enterprise. The Model Applier allows analog browsing of these databases after a 

prediction has been made on a test set of compounds. 
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B.  Suites and Models 

 

 

B-1.  Rodent Carcinogenicity Statistical Suite 
 

Most of the models in the Rodent Carcinogenicity Suite are intended to support regulatory 

decision-making processes. The RCA (Q)SAR models for prediction of carcinogenicity in 

rodents are based upon the DARS publications [2-5, 12, 14]. Rodent carcinogenicity was 

modeled for study calls, where the positive calls are trained as binary 1 and negative calls as 

binary 0. The outcome of a (Q)SAR prediction is given as the probability of being carcinogenic 

on a scale of 0 to 1 as described in the Section A. The lower the probability value, the lower the 

carcinogenic potential of a test chemical. The level of concern for test chemical carcinogenic 

potential is proportional to the number of sets of models with positive predictions. 

 

In this suite, there are two sets of RCA (Q)SAR models for predicting carcinogenicity endpoints. 

There are rodent models based on the 2-year rodent bioassays as well as cell transformation in 

vitro assays. The rodent models are used by the FDA as supporting information for decision-

making processes involved in the regulatory workflow. However, the cell transformation models 

are not used by the FDA for decision-making processes but rather only for R&D purposes.  

 

The rodent carcinogenicity models were rebuilt for version 2.0 of the Leadscope Model Applier 

software [26]. This represents the third version of the rodent carcinogenicity models. A large, 

high-quality rodent carcinogenesis database (1682 compounds), covering a large number of 

structural alerts and characteristics of both genotoxic and non-genotoxic carcinogens, was 

reconstructed and used as a basis for constructing (Q)SAR models for predicting four rodent 

carcinogenicity study groups: male rat, female rat, male mouse, and female mouse 

carcinogenicity. All original training set source data was re-examined and tumor findings were 

reported per major organ for each study group. Newly declassified data and additional public 

data were added to the training set. A tumor severity scoring system was developed to encode 

tumor severity and significance for each chemical in each data set. A score of zero corresponds 

to the absence of tumors. Increasing score values reflect the presence of multi-site tumors, 

tumors present across genders and/or species, and the conservation of tumor sites across genders 

and/or species. The maximum score is 50, representing the largest risk of human carcinogenic 

potential of the test article. For the purpose of constructing these (Q)SAR classification models, 

an overall binary score was applied, where a significant tumor finding over background in any 

organ system is defined as a positive. 

 

When compared to performance of earlier generation models for this endpoint, the new models 

demonstrate comparable performance statistics; however, the models have the benefit of being 

based on more examples of newly marketed drugs and the use of contemporary scoring criteria 

to define a positive tumor response.  The newly constructed models maintain good overall 

performance compared to the previous versions, including good sensitivity and negative 

predictivity, which are critical parameters for the safety assessment of drug products. 
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The number of molecules in the training set and their cross-validated predictive performance are 

presented in Table 1. External validation has been reported by the FDA in 2015 [26]. In that 

report they recommend using a positive probability cutoff of 0.4 for the maximum negative 

prediction and 0.6 for the minimum positive prediction, with probabilities of 0.4-0.6 representing 

equivocal or indeterminate predictions. 

 

Table 1.  Summary of Statistics of Models in the Rodent Carcinogenicity Suite 

 
Endpoint 

model names 
# training 

compounds 
Sensitivity (%) Specificity (%) 

Carcinogenicity Male Mouse 1267 62.2 84.0 

Carcinogenicity Female Mouse 1209 62.8 83.9 

Carcinogenicity Male Rat 1406 56.9 76.8 

Carcinogenicity Female Rat 1395 62.4 84.5 

In Vitro Cell transformation 640** 87.8 50.8 

SHE 425*** 88.8 55.8 

BALB/c-3T3 316† 87.8 54.7 

C3H10T1/2 138†† 93.9 22.5 

** The training set has 62% positive chemicals. 

*** The training set has 65% positive chemicals. 
† The training set has 59 % positive chemicals. 
†† 

The training set has 71 % positive chemicals. 

 

 

B-2.  Genetic Toxicity Statistical Suite 
 

Most of the models in the Genetic Toxicity Suite are intended to support regulatory decision-

making processes. The RCA (Q)SAR models for prediction of genetic toxicity in terms of 

mutagenicity and clastogenicity, are based upon the DARS publications [10,16,17]. Genetic 

toxicity was modeled for study calls, where the positive calls are trained as binary 1 and negative 

calls as binary 0.  The outcome of a (Q)SAR prediction is given as the probability of being 

genotoxic on a scale of 0 to 1. The lower the probability value, the lower the genotoxic potential 

of a test chemical. The level of concern for test chemical genotoxic potential is evaluated in 

proportion to the number of sets of models with positive predictions. 

 

This suite consists of modules of RCA (Q)SAR models for predicting gene mutation, and 

clastogenicity.  

 

Some models in this suite are not used as supporting information for decision-making processes 

involved in the regulatory workflow. Rather, they support R&D for assessing the genotoxicant 

potential of organic chemicals. However, the same modeling process along with the training set 

preparation based on weight of evidence approach were applied as described in the DARS 

publication [10,14,16,17]. 
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There are several RCA (Q)SAR models for predicting additional genotoxicity endpoints. They 

include in vitro chromosome aberrations, in vitro sister chromatid exchange, and Mouse 

Lymphoma mutagenicity.  

 

As of version 1.6 of the Model Applier, the Salmonella Mutagenicity model was updated to 

version 3.0[27]. This update included additional mutagenicity data and data added for 445 new 

compounds harvested from FDA approval packages and the published literature, to give a total 

of 3974 compounds. 247 drug molecules marketed between 1970 and 2011 were added. Data 

gaps within the training set were identified using structural features derived from known 

toxicophores [18] and new compounds were added to the training set to fill those gaps. 

 

As of version 1.7 of the Model Applier, the Salmonella Mutagenicity model, the previous E. coli 

(Q)SAR models were removed and replaced with a new, larger model of 1199 compounds 

containing either Escherichia coli WP2 uvrA, Escherichia coli, WP2 uvrA (pKM101) or  S. 

typhimurium TA102 strains.  This model, called the in vitro E Coli - Sal 102 A-T Mutagenicity 

model is designed to detect a variety of oxidants and other mutagenic carcinogens which modify 

A-T (adenine-thymine) base pairs [19].   

 

As of version 2.0, the in vitro chromosome aberration models for cell lines other than CHO and 

CHL have been discontinued. The CHO and CHL training sets have been updated and the 

models improved. The criteria set by OECD 473 were used to govern the data selected for model 

construction. Datasets were well-balanced, with 53% and 45% positives, respectively, and 

contained re-evaluated legacy data as well as new data to expand the chemical space of previous 

models.  

 

As of version 2.1, the in vivo micronucleus mouse training set has been updated and the model 

improved. Legacy data was re-evaluated and new data added to expand the chemical space of 

previous models [33]. An average model was built to overcome the deficiency of having few 

positives in the dataset resulting in better sensitivity and more balanced performance statistics. 

Citations for the source of training set data has now been included as hyperlink references within 

the study results. The model for overall rodent in vivo micronucleus has been removed. 

 

As of version 2.1, the training set for the mouse lymphoma model was updated, re-evaluated and 

regraded according to the most current criteria as described by the International Workshop on 

Genotoxicity Testing in 2005 [34]. Separate training sets and models have now been created for 

both activated and inactivated endpoints. The updated models have better sensitivity and more 

balanced performance statistics. Citations for the source of training set data has now been 

included as hyperlink references within the study results. 
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The number of molecules in the individual models and their predictive performance are 

presented in the tables below.  

 

Table 2-a. Summary of Statistics for Gene Mutation models 

 

Endpoint Models 
# training 

compounds 
Sensitivity 

(%) 
Specificity (%) 

in vitro Salmonella 3974 77.0 87.8 

in vitro E Coli - Sal 102 A-T Mut 1199 72.9 87.7 

in vivo mammalian 213 62.7 88.5 

in vivo mammalian dominant lethal 182 61.5 90.6 

in vitro CHO V79 hgprt 643 46..5 92.7 

Mouse Lymphoma Activated 5178Y-tk† 674 75.2 76.3 

Mouse Lymphoma Unactivated 5178Y-tk† 750 79.0 73.8 

                  † These models are used only in R&D purposes. 

 

 

 

 

Table 2-b. Summary of Statistics for in vivo Clastogenicity Models 

 

Endpoint Models 
# training 

compounds 
Sensitivity 

(%) 
Specificity (%) 

Micronucleus in vivo mouse 924 74.8 76.3 

Chromosome Aberrations in vivo 285 48.0 91.4 

Chromosome Aberrations in vivo rat 110* 6.67 96.8 

Chromosome Aberrations: in vivo 
Other Rodent 

153 48.1 86.9 

                 * Only 13 % of the training set was positive. 

 

Table 2-c. Summary of Statistics for in vitro Clastogenicity Models 

 

Models 
# training 

compounds 
Sensitivity 

(%) 
Specificity 

(%) 

in vitro chrom. ab. CHL† 874 80.0 73.9 

in vitro chrom. ab. CHO† 819 66.9 77.4 

SCE in vitro† 758 71.0 72.2 

SCE in vitro CHO† 624 87.7 42.4 

SCE in vitro other cells† 204* 96.0 38.7 

                         * Training dataset has 85% positive chemicals. 

                         † These models are used only for R&D purposes. 
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B-3.  Reproductive Toxicity Statistical Suite 
  

The models in the Reproductive Toxicity Suite are intended to support regulatory decision-

making processes. The RCA (Q)SAR models for prediction of reproductive toxicity in male and 

female rodents are based upon the DARS publications [16, 17].  

 

Reproductive toxicity was modeled for study calls (e.g., male mouse), where the positive calls 

are trained as binary 1 and negative calls as binary 0. The outcome of a (Q)SAR prediction is 

given as the probability of being reproductive toxicant on a scale of 0 to 1. The lower the 

probability value, the lower the potential toxicity of a test chemical. The level of concern for test 

chemical reproductive toxicant potential is evaluated in proportion to the number of sets of 

models with positive predictions. 

 

This suite consists of models of RCA (Q)SAR models for predicting reproductive toxicity in 

male and female rats and mice. All of these models were rebuilt in version 2.1 to provide for 

better sensitivity and balanced performance statistics. The number of molecules in the individual 

models and their cross-validated predictive performance are presented in Table 3.   

 

 

Table 3. Summary of Statistics for Reproductive Toxicity Models 

 

Models 
# training 

compounds 
Sensitivity (%) Specificity (%) 

Repro Rat Male 714 84.7 72.5 

Repro Mouse Male 146 84.5 77.3 

Repro Rat Female 894 61.1 95.3 

Repro Mouse Female 151 85.4 69.9 

Sperm Rat 723 71.8 80.1 

Sperm Mouse 261 73.2 77.7 

 

                                  

B-4.  Developmental Toxicity Statistical Suite 
 

The models in the Developmental Toxicity Suite are intended to support regulatory decision-

making processes. The RCA (Q)SAR models of developmental toxicity of the rodent fetus 

include dysmorphogenesis (structural and visceral birth defects), developmental toxicity (fetal 

growth retardation and weight decrease), and fetal survival (fetal death, post-implantation loss, 

and pre-implantation loss). The methods and data sources are described in DARS publications 

[16,17]. 

 

Developmental toxicity was modeled for study calls (e.g., dysmorphogenesis of rat), where the 

positive calls are trained as binary 1 and negative calls as binary 0. The outcome of a (Q)SAR 
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prediction is given as the probability of being developmental toxicant on a scale of 0 to 1. The 

lower the probability value, the lower the potential toxicity of a test chemical. The level of 

concern for test chemical developmental toxicant potential is evaluated in proportion to the 

number of sets of models with positive predictions. 

 

This suite contains RCA (Q)SAR models for structural dysmorphogenesis, visceral 

dysmorphogenesis, fetal survival, and fetal growth.. The number of molecules in the individual 

models and their predictive performance are presented in tables below.   

 

Table 4-a. Summary of Statistics of Structural Dysmorphogenesis Models 

 

Models 
# training 

compounds 
Sensitivity 

(%) 
Specificity 

(%) 

Structural Dysmorphogenesis Rodent 2019 28.6 94.4 

Structural Dysmorphogenesis Rat 1759 43.4 89.4 

Structural Dysmorphogenesis Mouse 979 34.6 90.5 

Structural Dysmorphogenesis Rabbit 1014 50.4 88.8 

 

 

Table 4-b. Summary of Statistics of Visceral Dysmorphogenesis Models 

 

Models 
# training 

compounds 
Sensitivity 

(%) 
Specificity 

(%) 

Visceral Dysmorphogenesis Rodent 2019 36.2 91.1 

Visceral Dysmorphogenesis Rat 1654 42.3 90.9 

Visceral Dysmorphogenesis Mouse 978 47.1 88.6 

 

 

 

 

Table 4-c. Summary of Statistics of Fetal Growth Models  

 

 

Models 
# training 

compounds 
Sensitivity 

(%) 
Specificity 

(%) 

Fetal Growth Retardation Rodent 2019 22.1 92.6 

Fetal Growth Retardation Rat 1759 33.3 89.8 

Fetal Growth Retardation Mouse 978 40.4 90.2 

Fetal Growth Retardation Rabbit 1013 38.8 89.0 

Fetal Weight Decrease Rodent  2019 30.8 91.8 

Fetal Weight Decrease Rat 1759 36.7 89.8 
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Fetal Weight Decrease Mouse 978 43.9 91.0 

Fetal Weight Decrease Rabbit 1013 41.1 90.6 

 

 

Table 4-d. Summary of Statistics of Fetal Survival Models 

 

Models 
# training 

compounds 
Sensitivity (%) 

Specificity 
(%) 

Fetal Death Rodent 2019 28.6 90.6 

Fetal Death Rat 1759 28.9 91.8 

Fetal Death Mouse 978 36.9 90.4 

Fetal Death Rabbit 1013 42.9 89.5 

Post Implantation Loss Rodent 2019 30.9 92.5 

Post Implantation Loss Rat 1759 31.4 90.2 

Post Implantation Loss Mouse 978 28.3 92.6 

Post Implantation Loss Rabbit 1013 49.0 86.2 

Pre Implantation Loss Rodent 2019 32.3 90.6 

Pre Implantation Loss Rat 1759 38.7 89.0 

Pre Implantation Loss Mouse 978 51.2 90.0 

Pre Implantation Loss Rabbit 1013 48.9 88.4 

 

      

B-5.  Neurotoxicity Statistical Suite 
 

The models in the Neurotoxicity Suite intend to support regulatory decision-making processes. 

The RCA (Q)SAR models for neurotoxicity include prediction of new born behaviors. The 

methods and data sources are described in the DARS publications [16,17]. 

 

Neurotoxicity was modeled for study calls, where the positive calls are trained as binary 1 and 

negative calls as binary 0. The outcome of a (Q)SAR prediction is given as the probability of 

being neuro toxicant on a scale of 0 to 1. The lower the probability value, the lower the potential 

toxicity of a test chemical. The level of concern for test chemical neurotoxicant potential is 

evaluated in proportion to the number of sets of models with positive predictions. 

 

This suite contains RCA (Q)SAR behavioral toxicity models of newborn rodent, rat, and mouse.  

The number of molecules in the individual models and their predictive performance are 

presented in Table 5.   
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Table 5. Summary of Statistics of Behavioral Toxicity Models 

 

Models 
# training 

compounds 
Sensitivity 

(%) 
Specificity 

(%) 

Behavioral Toxicity Newborn Rodent 671 60.1 88.8 

Behavioral Toxicity Newborn Rat 628 57.4 91.4 

Behavioral Toxicity Newborn Mouse 172 75.7 88.1 

 

 

B-6.  Human Adverse Cardiological Effects Statistical Suite 

 
The models in the Human Adverse Cardiological Suite intend to support regulatory decision-

making processes. The RCA (Q)SAR models for prediction of human adverse effects of 

pharmaceutical chemicals are based on the DARS publications [19-22. Data were obtained from 

the FDA’s post market surveillance AERS (Adverse Event Reporting System) and SRS 

(Spontaneous Reporting System) databases and the literature. Methodology of developing the 

human clinical endpoints based on data from these reports is published by DARS group [20]. 

 

Human adverse cardiological effects were modeled for summarized effects, where the positive 

effects are trained as binary 1 and negative as binary 0. The outcome of a (Q)SAR prediction is 

given as the probability of being cardiac toxicant on a scale of 0 to 1. The lower the probability 

value, the lower the potential toxicity of a test chemical. The level of concern for test chemical 

cardiac toxicant is evaluated in proportion to the number of sets of models with positive 

predictions. 

 

In this suite, there are RCA (Q)SAR models for predicting several cardiac endpoints, including: 

conduction disorders, coronary artery disorders, electrocardiogram disorders, heart failure 

disorders, arrhythmia disorders, bradycardia disorders, QT prolongation, tachycardia disorders, 

torsades, myocardial infarct disorders, myocardial disorders, palpitations, and rate rhythm 

disorders. The number of molecules in the individual models and their predictive performance 

are presented in Table 6.   

 

Table 6. Summary of Statistics of Human Cardiological Effects Models 

 

Models 
# training 

compounds 
Sensitivity 

(%) 
Specificity 

(%) 

Conduction Disorders 1628 61.7 90.4 

Coronary Artery Disorders 1628 52.9 89.1 

Electrocardiogram Disorders 1628 51.2 87.8 

Heart Failure Disorders 1628 46.3 91.2 

Arrhythmia Disorders 1509 50.0 91.5 

Bradycardia Disorders 1628 59.3 89.3 
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QT prolongation 1628 61.3 88.5 

Tachycardia Disorders 1628 60.3 87.7 

Torsades 1628 64.0 87.5 

Myocardial Infarct Disorders 1628 61.7 88.3 

Myocardial Disorders 1629 47.4 87.9 

Palpitations 1628 58.2 88.0 

Rate Rhythm Disorders 1628 39.1 90.1 

 

 

B-7.  Human Adverse Hepatobiliary Effects Statistical Suite 
 

The models in the Human Adverse Hepatobiliary Suite intend to support regulatory decision-

making processes. The RCA (Q)SAR models for prediction of human adverse effects of 

pharmaceutical chemicals are based on the DARS publications [20]. Data were obtained from the 

FDA’s post market surveillance AERS (Adverse Event Reporting System) and SRS 

(Spontaneous Reporting System) databases and the literature. 

 

Drug-induced liver injury (DILI) is one of the most common drug-induced adverse events (AEs) 

leading to life-threatening conditions such as acute liver failure. It is also the second most 

common cause for post-market withdrawals or warnings. Efforts to develop new predictive 

methods to assess the likelihood of a drug being a hepatotoxicant have been challenging due to 

the complexity and idiosyncrasy of clinical manifestations of DILI. The FDA adverse event 

reporting system (FAERS) contains post-market data that depict the morbidity of AEs.  

 

The hepatotoxicity suite of models was updated in version 2.0 of the Leadscope Model 

Applier[28,29]. A new training set of 2029 unique and modelable drug entities with 13,689 drug-

AE combinations was extracted from the AERS database using 38 hepatotoxicity-related query 

preferred terms. Additional filtering was performed to remove low confidence negative data and 

the resulting dataset of 1314 compounds, where the percentage of actives in the set was 50%, 

was used to build (Q)SAR for several endpoints.  Part of this training set including descriptions 

for endpoint development is available from the DARS website [24]. Methodology of developing 

the human clinical endpoints based on data from these reports is published by DARS group [21].  

 

Human adverse hepatobiliary effects are modeled for summarized effects, where the positive 

effects are trained as binary 1 and negative calls as binary 0. The outcome of a (Q)SAR 

prediction is given as the probability of being hepatobiliary toxicant on a scale of 0 to 1. The 

lower the probability value, the lower the potential toxicity of a test chemical. The level of 

concern for test chemical hepatobiliary toxicant potential is evaluated in proportion to the 

number of sets of models with positive predictions. 

 

In this suite, there are RCA (Q)SAR models for predicting: bile duct disorders, cholestasis, liver 

acute damage, and liver enzyme release disorders. The number of molecules in the individual 

models and their predictive performance are presented in Table 7.   
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Table 7. Summary of Statistics of Human Hepatobiliary Models 

 

Models 
# training 

compounds 
Sensitivity  

(%) 
Specificity 

(%) 

Bile Duct Disorders 1017 75.9 86.6 

Cholestasis 1124 74.8 76.9 

Liver Acute Damage 1314 73.2 66.1 

Liver Enzyme Release Disorders 1134 72.6 76.1 

 

 

B-8.  Human Adverse Urinary Tract Effects Statistical Suite 
 

The models in the Human Adverse Urinary Tract Suite intend to support regulatory decision-

making processes. The (Q)SAR models for prediction of human adverse effects of 

pharmaceutical chemicals are based on the DARS publications [20,22]. Data were obtained from 

the FDA’s post market surveillance AERS (Adverse Event Reporting System) and SRS 

(Spontaneous Reporting System) databases and the literature. Methodology of developing the 

human clinical endpoints based on data from these reports is published by DARS group [20-22].  

 

Human adverse urinary tract effects are modeled summarized effects, where the positive effects 

are trained as binary 1 and negative effects as binary 0. The outcome of a (Q)SAR prediction is 

given as the probability of being urinary tract toxicant on a scale of 0 to 1. The lower the 

probability value, the lower the potential toxicity of a test chemical. The level of concern for test 

chemical urinary tract toxicant potential is evaluated in proportion to the number of sets of 

models with positive predictions. 

 

In this suite, there are models for predicting: bladder disorders, blood in urine, kidney disorders, 

kidney function tests, nephropathy disorders and urolithiasis disorders. The number of molecules 

in the individual models and their predictive performance are presented in Table 8.  

 

 

Table 8. Summary of Statistics of Human Urinary Tract Models 

 

Models # training compounds Sensitivity (%) Specificity (%) 

Bladder Disorders 1591 51.5 89.7 

Blood in Urine Disorders 1591 49.7 94.3 

Kidney Disorders 1590 36.8 95.8 

Kidney Function tests 1589 48.9 89.9 

Nephropathy Disorders 1590 52.9 90.8 

Urolithiasis Disorders 1591 42.1 94.9 
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B-9.  Genetox Expert Alerts Suite 

 
The Leadscope Genetox Expert Alerts have been implemented as part of the Leadscope Model 

Applier as of version 1.8 (alongside the existing statistical-based (Q)SAR models). To develop 

of this system, an initial library of mutagenicity structural alerts was identified from the literature. 

This process included consolidating the same or similar alerts cited in multiple publications. 

Information on plausible mechanisms was collected alongside the structural definitions. Factors 

that deactivate the alerts were also identified from the literature and through an analysis of the 

corresponding data using the Leadscope data mining software. Over 200 distinct alerts were 

identified and these alerts were further validated against a reference database of about 10,000 

chemicals with known bacterial mutagenesis results. Only validated alerts with a sufficiently 

strong association with positive expert-reviewed calls from Salmonella and E. coli strains were 

included. A prediction of the bacterial mutagenesis assay can be made using these validated 

alerts; however, this is only possible when the compound is within the applicability domain of 

the alert system. In addition, a confidence score based upon information collected for each alert 

is provided alongside the positive or negative call. 

 

As of version 2.0 of the Leadscope Model, the Leadscope Genetox Expert Alerts have been 

updated (to version 2) to include knowledge shared from corporate sponsors. The alerts have 

been further refined to include additional corporate knowledge in versions 3.0 and 4.0 

 

Leadscope has established a knowledge-sharing program with interested corporate sponsors to 

address specific (Q)SAR regulatory issues identified through discussions with sponsors and 

regulatory agencies. The initiative allows the use of proprietary corporate information to be 

investigated under confidentiality restrictions and identify potential solutions to specific 

predictivity issues or increase the number of compounds which can be predicted.  

 

Knowledge from proprietary data has also been used by Leadscope to increase both the 

sensitivity and specificity for selected chemical classes. In version 4 of the alerts, 37 new alerts 

have been added and 27 alerts modified to support updates when predicting classes of: alkyl 

halides, methyl halides, aromatic nitros, aromatic amines, halo-amines, aromatic amides, 

hydrazines, polycyclic aromatics, fluorenes, and boronic acids. Mitigating factors were also 

identified from fingerprint data and corporate data contributed to the public sector and were used 

to reduce false positives of common chemical starting materials and reagents. 

 

The process for knowledge sharing was through the use of structural fingerprints for several 

compound classes. Several thousand chemical fingerprints based on the Leadscope fragment 

hierarchy, data analysis of a reference set and external knowledge containing a variety of 

primary aromatic amines were derived. The list of substructures includes meta-, para-, ortho-, 

hetero-substituted, polycyclic, as well as more complex substitution patterns. When these 

fingerprints were applied to a proprietary data set by the data owner(s) the result is a listing of 

named substructures present along with the number of positive and negative bacterial 

mutagenicity examples which are present. Only the results for the pre-defined substructures in 

the fingerprint are summarized and it is therefore possible to apply these fingerprints to a 



Leadscope Model Applier 2.2 
 

 

16  

 

proprietary database without revealing information for individual compounds or data.  This 

project now includes over 13 pharmaceutical companies and regulatory agencies and has resulted 

in continued improvement in the performance around primary aromatic amines. This fingerprint 

methodology is also being applied to other chemical classes including boronic acids and alkyl 

halides.  
 
The responsiveness statistics of bacterial mutation tester strains (and strain combinations) have 

been updated for the alerts reflecting updates to the alert definitions and Alert Reference Set data. 

 

To assess the performance of this alert system, two data sets were used: (1) the reference set (as 

described in Reference set section), and (2) the Hansen data set. The Hansen set includes data 

described in the Hansen et al. publication [25] where the full set includes 6,512 chemicals. Those 

in the RCA-(Q)SAR training set were removed [18]. A number of other chemicals were also 

removed based on stereo-chemical considerations or their inability to be modelled leaving 3,903 

compounds. Table 9 shows the performance results for the reference set. Table 10 shows the 

corresponding performance statistics for the Hansen data set. For further information see the 

white paper [23]. 

 

Table 9: Expert Alert Performance (version 4) for the over 10,000 Compound Reference Set 

 

Concordance 86% 

Sensitivity 85% 

Specificity 87% 

Positive Predictivity 89% 

Negative Predictivity 84% 

Coverage 92% 

 

Table 10: Expert Alert Performance (version 4) for the Hansen Set 

 

Concordance 83% 

Sensitivity 92% 

Specificity 70% 

Positive Predictivity 81% 

Negative Predictivity 85% 

Coverage 94% 
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C. Model Applier 
 

C-1.  Importing a Test Set 
 

Tests can be imported into the application as files or an entry for a single compound. The 

application handles both MDL MOL or SD files and SMILES. 

 

 

 

 

 

 

 

 

 
 

Importing from a file can be accessed by clicking the “Import a test set” wizard button. The task 

wizard will go through “file chooser/review structure file (structure id can be specified)/name the 

test set/Finish”. If the test set contains other data, the wizard will guide accordingly. After 

naming the test set, follow “choose other the data set /define the data type (numeric vs. 

text)/Finish”.  If the SD or MOL files do not contain the name or data field for a name, the 

application will automatically assign “Test-Structure –” prefix in a numeric order. As of version 

1.8, multiple MOL files may be imported at the same time. 

 

Importing a single structure from a file can be achieved from this wizard as well. The wizard 

also allows updating an existing test set. 

 

Importing a single structure by entry is also allowed from the “Apply models” wizard (see C-4).  

 

 

  

Select a file  

SD or MOL file  

Delimited text  

SMILES in Delimited text 
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C-2.  Managing Test Sets 
 

This wizard provides ways to browse imported structures and data, rename or delete the test sets, 

and delete prediction results. 

 

 

C-3. Reviewing Prediction Models and Expert Alerts 
 

The RCA (Q)SAR models in this application can be accessed from this wizard. The models are 

organized hierarchically in a tree in the same order shown in the tables in Section B1-9. When 

clicking the model name, a short description will appear in the “description” box in the right 

pane.   

 

 

The wizard allows the review of both the overall average model as well as the sub-models. Again, 

the probabilities of a compound to be positive in each sub-model were averaged to calculate an 

overall prediction. 

  
 

 

Clicking “Next” from this wizard will display the cross-validated model results for chemicals in 

the training set. For example, myocardial infarction model results are shown in the next figure 

below. Leadscope
®
 calculates concordance (overall accuracy), sensitivity, specificity, receiver-

operator-constant (ROC) for positives and negatives. 

 

The graphs below indicate how well the structures with experimental values of zero (on the left) 

and one (on the right) were predicted. In this example, the true positives were selected, which 

highlights the number of structures with a predicted positive probability of >= 0.5 in the graph on 

Myocardial infarction model can be 

retrieved from “Human Adverse 

Cardiological Effects Suite/ 

Cardiological Effects” 

Click Sub Model names to 

review submodel statistics 

Model description 

Click Next to review 

overall (or average 

model) statistics 
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the right. The “Show Selected Structures” button will then display the training set structures and 

experimental and cross-validated positive prediction probabilities (e.g. toxic) in a table. 

 

  
 
Model features and significance can be reviewed for each individual model. If a model is an 

average of several individual sub-models, the action has to be invoked from the sub-models 

option in the first panel of the “Review Model Results” wizard as shown on page 21. If the 

overall model is the individual model itself, then model diagnostics are directly available from 

the overall model. For example, following the Sub-model A link in the myocardial infarction 

model leads to a table of prediction results table (actual values, predicted values, and number of 

compounds in the local neighbor for the test chemical within 60% similarity), followed by the 

statistics and feature significance wizard panels. The model of this sub-model A for the 

myocardial infarction model used 207 structural features and 2 PLS factors. This cross-validation 

was performed at 3%. The graph of PRESS (prediction residual sum of squares) vs. Feature 

Count is presented, indicating the reason for the selection of 2 PLS factors during the 

optimization process. 

 

True positives 

Display true 

positive structures 

Distribution of 

prediction 

probabilities for 

actual positives 

with true 

positive 

predictions 

highlighted. 

Distribution of 

prediction 

probabilities for 

actual negatives. 
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The 207 structural features are then presented in the next screen. The features can be sorted by 

loadings, which is analogous to a regression coefficient of linear regressions.  

 

 

 

  
 

Total (+) loadings 

0/1 distribution of training set. 

The percentage of training set 

structures having the feature 

that are zero and those that are 

one. 

Probability distribution of 

model results for those 

training set structures 

having the feature. 

Total loadings 

PRESS 

Total weight 

Best factor 

count of 2 has 

lowest PRESS 

Up to 10 

factors tried 
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In this model, three highly-weighted features, with high total loadings, and total (+) loadings 

include: 1) nitrate, 2) propargyl alcohol and 3) 1-methane-carboxylate, 1-alkylamino-. The 

training set structures containing these features are all positive for this effect, as indicated by the 

0/1 frequency distribution of the training set. 

 

The scaffolds (represented as numbers in the feature table) are structural motives generated in 

Leadscope as “predictive scaffolds” based on FDA DARS training sets at the time of model 

building. Scaffolds are assembled from features in the Leadscope hierarchy and are optimized 

against the particular endpoint activity. 

 

One or more row (i.e. features) may be selected and the structures in the training set matching 

them may be displayed using the “Show Selected Structures” button. 
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C-3b. Reviewing Expert Alerts 

 
To review the Leadscope expert alerts, click on Endpoint name (e.g. Bacterial Mutation) and 

click OK. 

 

 
 

This next screen outlines the performance of the Alerts against the references set. 

 

 

 
 

 

 

Next is a listing of all alerts along with information on the performance of each alert, including 

the number of positive and negative chemicals in the reference set. 
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Double clicking on any of the rows will show the chemical structures matching the alert. Right 

clicking on a row and selecting the option “Display alert definition” will show a definition of the 

alert, including source, deactivating fragments, examples, mechanisms, and strain information. 

 

 
 

As of version 2.1 of the Leadscope Model Applier, the alert definitions (version 3) included 

strain statistics indicating the repsonsiveness of individual and combination of strains for each 

alert. This includes a recommendation of strains to target for follow-up Ames testing (per alert) 

in cases where sufficient amount of test material is not available or is difficult to synthesize (per 

Note 2 of the M7 Guidelines) [35].  
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C-4. Applying Models and Expert Alerts 

 
“Apply models for existing imported test set” can be accessed from this panel. Within this 

“Apply Statistical Models/Alerts” panel, it is possible to enter a single chemical by typing a 

SMILES string, copying/pasting, or browsing a mol file. Below, N-phenylacetamide was entered 

as a SMILES string. 

 

   
 
Note that SMILES strings with stereo-chemistry have their stereo-chemistry removed upon entry. 

The maximum length of a SMILES string is 4000 characters. Stereo-chemistry in MOL or SD 

files is preserved. 

 

At the time of importing structures, Leadscope will save them in the application as a “test set”. 

This process perceives of all the features and eight calculated properties associated with the 

chemical and stores the fingerprint and property values. When importing many structures this 

may by time-consuming. However, fingerprints are calculated only once and prior to applying 

any of the models. When models are applied only the parent form of the test compound is used 

for prediction; organic, inorganic salts and water fragments and fragment copies are not 

considered and the compound is neutralized as appropriate. See Appendix A for the list of 

organic salts removed. 

 

Within the application, running multiple models and expert alerts is possible and the results of 

the multiple models are displayed in the “Summary” tab of the prediction results table. As an 

example, mouse models for the RCA (Q)SAR rodent carcinogenicity suite are being illustrated 

here. In the mouse module, there are three models, i.e., mouse (composite), mouse female, and 

mouse male. All the models can be selected and run simultaneously, but the results will be 

presented in a separate tab as well as a summary. Each of the biological endpoint models can be 

Enter  a 

SMILES 

Read a file. 

Paste a structure. 

Select any 

previously 

imported test 

set. 
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an overall model based on sub-models of each biological endpoint. Carc Mouse and Carc Rat are 

separate composite models of mouse female/male and rat female/male data, respectively. They 

are not averaged results of Carc Rat Female and Rat Male, or Carc Mouse Male/Female models. 

 

 

 

   
 

After applying Carc Mouse (composite), Carc Mouse Male, Carc Mouse Female models on N-

phenylacetamide, the results are tabulated in a “Summary” table. This summary displays all the 

requested prediction results for each model as well as indicating whether any prediction calls for 

from any of the models were positive. Individual prediction results are available from the 

“Rodent Carcinogenicity” tab. 

   
 

Summary tab showing results across all models 

Color coding groups the aggregated 

biological endpoints (mouse female and 

mouse male, mouse composite) to the 

module level (e.g., Carc Mouse).  

Generate a Report Save All Results  

Model hierarchy 

Suite Name: Rodent Carcinogenicity 

    Models: 

Carc Mouse Female 

Carc Mouse Male 

Carc Rat Female 

Carc Rat Male 

Max Positive Prediction 

- indicating whether any 

predictions were positive 
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Prediction calls include positive, negative, not-in-domain or missing descriptors. In RCA models, 

any probability equal to or greater than 0.5 is considered positive. No predictions will be made if 

the test chemical is considered not-in-domain or when not all of the descriptors (such as ALogP) 

can be generated for the chemical structure. Leadscope
®

 uses two parameters to guide the 

applicability of model domain: 1) having at least one structural feature defined in the model in 

addition to all the property descriptors; 2) having at least one chemical in a training 

neighborhood with at least 30% global similarity to the test structure.  

 

Additional model parameters can be retrieved by clicking the “Add/Remove Columns” button. 

 

   

Statistics for each individual or submodel: 

- Prediction results include selected 

statistics for all sub-models  

- Domain distance 

- 30% sim. training neighbors count 

- Model feature count 

Statistics summarized over submodels : 

- Overall prediction call for the model 
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The overall Prediction column includes consideration of any experimental data found for the test 

compound. In this case, the experimental over-rides any predicted value and the experimental 

call is displayed in the table as a hyperlink. To view the predictions excluding experimental data 

select the QSAR-only columns from the column chooser. 

 

When submodel columns are selected, the statistics in the spreadsheet for each submodel are 

grouped together. Different submodel columns have different color column titles to distinguish 

them apart. However, the specific color has no other meaning. 

 

Within the carc mouse female model for N-phenyacetamide, 13 chemicals were found to be 

within the neighborhood defined by 30% similarity by Leadscope’s definition. There were 7 

model features used to calculate this prediction. The minimum distance of the test chemical to all 

the training set structures (based on all chemical features) is 0.4848.  

 

 

    
 

  

Nearest neighbor count 

Minimum 

distance 

Model feature count 
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C-4b. Applying Expert Alerts 
 

The Genetox Expert Alerts were added as of version 1.8 of the Leadscope Model Applier. The 

Expert Alerts are included in the Genetox Expert Alerts Suite under the Expert Alerts section of 

the hierarchy (versus the Statistical Models section). Expert Alerts may be selected for 

application to a test set in the same manner as statistical models. In fact, both may be applied at 

the same time to a given test set.  Version 2.2 of the Leadscope Model Applier includes an 

update to the Genetox Expert Alerts Suite (version 4). 

 

To help with ease of use, a “Use ICH M7 Settings” button has been created. This button will 

select all the appropriate expert alerts and statistical models necessary for analysis of impurities 

in accordance with the ICH M7 guidance on that subject as well as set any appropriate settings. 

In this example below, the expert alerts for Bacterial Mutation were selected as well as statistical 

models for Salmonella Mutagenicity and E. coli / Salmonella TA102 Mutagenicity. 

 

 
 

The results when applying both alerts and statistical models are displayed as different tabs in the 

results. As previously shown, a summary view provides an overall picture of the results. 

However, now the statistical model and alerts are shown in different sections as two different 

methodologies were used in the creation of their results, respectively. In each section, results are 

displayed for experimental and predicted results. Highlighting of the test compounds with 

positive and negative models features is shown for the statistical models and alerts are 

highlighted in the Expert Alerts section. In the figure below we seen that the epoxide is 

highlighted as a pertinent model feature in both the Salmonella and E. coli model predictions (in 

the Statistical Models sections) and it is also found as an alert (in the Expert Alerts section). 

Predictions, alerts, and experimental data (not shown for brevity) are used together as evidence 

for creating an overall M7 consensus call displayed in the M7 Consensus column. This 

consensus is only shown if the ICH M7 button is used in running the prediction.  

ICH M7 Settings Button 

Selected alerts and 

models 

Parameters automatically set 

with ICH M7 button 
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Reports containing the consensus call with reasoning may be generated using the Generate Full 

Reports button. Performance against a validation set can be calculated using the Compare 

Conensensus with Data button. Additional columns may be added or removed using the 

Add/Remove Columns button at the top right of the dialog. Note that experimental values found 

in the model training sets or alert reference set may be displayed as an individual column or part 

of the Prediction column. User data, may also be added as a column to the spreadsheet using the 

Other Datas sets button. 
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Hovering the mouse over the M7 Consensus call displays the reasoning used in calculating the 

consensus. This information is also displayed in the report and when selecting the Explain button 

from the Summary Sheet. The set of rules used in caclulating the consensus are shown below. 

Note that experimental data takes precedence over QSAR-only prediction calls. Positive 

experimental data results in a positive consensus. Negative experimental data can over-ride a 

positive prediction for a given endpoint. Lacking experimental data for a test compound, a 

predicted positive call for any model or alert results in a positive consensus prediction. Rules 

handling combinations of negative and out-of-domain (or indeterminate) predictions are more 

subtle and depend on the weight of evidence available. Sometimes there is not enough evidence 

to support a conensus prediction and the result is inconclusive. As of version 2.2 the consensus 

values for rules 12 and 14 where changed from negative to inconclusive (reflecting the cases 

when one technology was out-of-domain) and rules 14b, and 14c were added reflecting the cases  

when both model and alert predictions were negative. 

 

The table or ordered rules used for creating the consensus prediction is shown below. 
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experimental 

data 

Negative 
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data 

Not enough 
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Positive 

predictions 

Negative 
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Selecting the Gentox Expert Alerts tab on the summary sheet displays (only) the results from 

applying the expert alerts against the test set. The alerts (if any are found) are highlighted on the 

test structures in the first column. The names of all matched alerts are displayed in a separate 

column. The alert precision column displays the mean bacterial mutation value for all reference 

compounds having the matching alert. In the case where multiple alerts match, this mean value 

corresponds to the alert with the highest mean value. The Generate Reports button will generate 

a report for the matching alerts. However, since this view is specific to only alert results, the 

report will not contain a consensus prediction nor any results from statistical model predictions. 

Performance against a validation set can be calculated using the Compare with Data button.  

Note that this uses (Q)SAR predictions and any experimental data when comparing results with 

an external data set. Additional columns may be added or removed using the Add/Remove 

Columns button at the top right of the dialog. The Find Analogs button allows searching for 

known compounds similar to  the test compound in either the reference set for the alerts (that 

was used for qualifying the alerts) or against a Leadscope databases containing genotoxic and 

carcinogenicity experimental data.  See section C-7 for further details. 
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The result of Comparing with Data is shown below. This feature compares the prediction results 

against a user-specified property calculating the Cooper statistics for the result. The user-

specified property values are considered the “actual values” for purposes of the comparison. For 

comparison of alert results against actual values, the histograms display the precisions of the 

matching alerts when run against a reference set. This provides a visualization of the distribution 

of the predictability of the alerts against a validation set. Note that for negative predictions, 

where no alert is found and the test compounds are in the applicability domain, that the precision 

is about 14%. This indicates that for the reference set, the set of all alerts accounts for 85% of the 

positive examples in that set. And that 14% of the positive reference compounds did not have an 

associated alert that could explain its activity. 
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C-5. Explaining Prediction Results  
 

A new capability added into version 1.3 of the Model Applier is the ability to visually inspect 

how the software arrived at a particular prediction.  This is accomplished by coloring the test 

structure’s atoms and bonds red when representing positive probability prediction contributions 

(“hot spots”) and green/blue when representing detoxifying features (“cold spots”). Deeper 

shades represent a stronger contribution. The coloring is supported by displaying the partial 

probability contribution value of each feature to the overall predicted probability value.  

 

There are three ways to explain prediction results in the model applier: 

1) A single prediction on a single structure can be explained in detail. This visualization 

allows contributions of individual features to the overall prediction to be examined. 

2) Multiple-model predictions on a single structure can be compared with this feature. This 

comparison allows visual inspection to see whether the same features are significant in 

predictions from several models. That is, are the same features responsible for toxicity? 

3) A single model predicting values for multiple structures can be compared. For a single 

model, this allows a series of structures to be compared to see how changing structural 

features affects the prediction results. 

 

This “Explain” feature is accessed through the “Explain” button that appears on different 

prediction results pages.  

 

 

 
                      Figure C-5.1 

 

 
 

Explain Feature 
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1. Explaining the results of a single model prediction on a single test structure 

 

The detailed results of the predictions will be displayed as in figure C-5.2. The test structure is 

displayed at the top of the page and is repeated three times. The features matching the structure 

(14 in this case) are highlighted together (i.e. unioned) on the picture on the left. Weights are 

calculated for each atom and bond in the picture based on the summation of the contributions 

from each feature. Both positively and negatively contributing features are summed together to 

color the structure – darker shades of  red represent increasing positive contributions and darker 

shades of  blue/green increasing negative contributions. Black indicates where no features 

matched a portion of the test structure. In order to more easily distinguish the positive and 

negative contributions, two additional pictures are displayed, one for only positive contributions 

(red) and one for only negative contributions (blue/green). 

 

In this example only one model was used; however, it is possible that multiple submodels could 

be used in the prediction and the average predicted value would be displayed. In this example, 

the total number of features (from a total training set of 3,974 structures) was 369 with 14 

features plus 7 properties used to make this prediction. The features present contributed 87.49% 

to the predicted value with the properties contributed the remaining amount (12.51%). The “All 

features” structure display shows the highest contribution to the prediction coming from the ring 

system colored red. The table of features shows the top two positive features (as it is sorted by 

default by the %partial contribution column). Both the features contribute positively: 0.283 

(28.73%) from the first and 0.2696 (27.37%) from the second.   
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Figure C-5.2 

 

 

The total individual atom contributions (as summed from all overlapping features) can be 

calculated when the user selects the atoms via the mouse (lasso or control-click). This provides 

an easy way to find the contributions of features which may overlap individual atoms or bonds 

(and to redefine a feature definition). The purpose of this approach is to easily understand the 

underlying matrix contributions being made towards the overall predicted probability without 

examining a matrix of numbers. It is the sum of all the positive and negative features 

contributions for those features matching the test structure. Since it is unlikely that all the 

features will consist of independent atoms and bonds, the structure displayed at the top of the 

page combines these together. Since it may be difficult to determine the positive and negative 

contributions from one picture, these have been separated out into individual pictures. 

 

This display can be useful in determining the major features contributing to an overall positive 

prediction when the contribution can be confined to a reasonably small substructure of the test 

structure. It can also be insightful in cases where both highly positive features and highly 

negative features exist. This may indicate conflicting information in the model (which may 

reduce the user confidence of this particular prediction), or it may indicate a mitigating effect of 
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a feature, such as a detoxifying alert in the presence of a primary toxic alert. In any case, the user 

knows exactly the information that went into the prediction and quantitatively. 

 

The user has the option to examine the training sets matching any selected model feature. When 

the “Show Selected Training Structures” button is pressed, the training set structures having the 

selected features are displayed with the feature highlighted.  

 

 
Figure C-5.3 

 

 

The results in Figure C-5.2 also allow the user to examine the prediction results from individual 

submodels where they have been used. As each submodel is constructed with different training 

subsets, different features may arise as the most prominent features for that submodel prediction. 

In some cases, one submodel prediction may be significantly different (e.g. lower) than the 

others. That submodel may be missing significant features that were used in the other predictions. 

If the user can determine this by examination, then the contribution made by this submodel may 

be validly dismissed. 

 

2. Explaining the results of multiple model predictions on a single test structure 

 

The second type of explanation is to compare the results from several model predictions for a 

single test structure. If a single row (i.e. structure) is selected from the Summary page (see figure 

C-5.1), a visual comparison of the all the predictions is possible. The user first selects the model 

results for comparison. All prediction results may be selected, however, it is most useful to 

compare positive prediction results to identify common substructures responsible for the 

prediction. All selected positive predictions could be selected by pressing the “Select Positives 

Only” button. 
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Figure C-5.4 

 

 

The resulting presentation shows the highlighting of significant features on the same structure for 

two models. The coloring scheme is absolute, such that the same significance can be assigned the 

same colored features across all the model results displayed. An explain button is available on 

each result. It allows further drilling-down into individual results for a more detailed analysis. 

 

 

 
Figure C-5.5 
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3. Explaining the results of a single model prediction on multiple test structures 

 

The third type of explanation is to compare the prediction results from a single model prediction 

for multiple test structures. If a more than one row (i.e. structures) are selected from the 

prediction results for a single model (see Figure C-5.2) then the resulting presentation shows the 

highlighting of significant features on the series of structures for a single model. 

 

 
Figure C-5.6 

 

Again, the coloring is absolute, so that differences in contributions (e.g. toxicity) from different 

features in a series of compounds can be compared.  

 

The explain button, again, is available on each result and allows further drilling-down into 

individual results for a more detailed analysis. 
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C-5b: Explaining Alert Results: 
 

It is possible to explain the expert alerts results in a similar manner to the (Q)SAR model. The 

initial explanation view lists any matching alerts in the test chemical. The “All Alerts” structure 

will highlight in red all active or indeterminate alerts matching the test compound (as long as the 

alert has not been deactivated). Any deactivating features that negates an alert will be shown in 

blue/green (with the alert being deactivated in gray). The “Primary Alert Template” view will 

only show the alerts, with the “Deactivating Templates” only showing structural features 

responsible for deactivation of an alert. Where one or more alerts are identified (with no 

deactivation), each alert is summarized in the main table along with the number of chemicals in 

the reference set (broken down by positive and negative examples). The precision of the alert is 

shown corresponding to the proportion of positives examples alongside a small histogram 

summarizing this proportion. In this example, there were no deactivated alert which would have 

been shown under a second tab “Deactivated Alerts”. 

 

 
Figure C-5.7 

 
Examples (illustrated in Figure C-5.8) from the reference set can be displayed from this explain 

view by double clicking on an alert. The definition for the alert can also be shown by clicking on 

the “Display Alert Definition” button, with the results shown in Figure C-5.9. 
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Figure C-5.8 

 

 
Figure C-5.9 
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C-6. Reviewing Prediction Results 

 
The Review Prediction Results button on the main page of the Leadscope Model Applier allows 

for review of previously applied model/alert results. All of the same functionality described in 

earlier sections of this chapter is available and may be applied. This button was added primarily 

for pay-as-you-go customers so that they may save their prediction results and review them at a 

later time without being charged again for making a prediction. 

 

 

C-7.  Browsing Analogs in Leadscope Databases 

 
Once a prediction has been made the user has option of searching companion databases for 

similar compounds containing experimental data. The Leadscope Genetox and Carcinogenicity 

Databases are now provided with the purchase of those model suites respectively. This includes 

overall call data for tested compounds as well as the underlying study-level calls, test-level calls, 

tests, and literature references for the data. This is in addition to searching analogs in the model 

training sets which is available under the Explain capability. 

 

After a prediction is made, the “Find Analogs” button is present as part of the prediction results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next the database analogs similar to the test compound are displayed in a spreadsheet. This sheet 

includes the similarity score of the analogs, overall call data for genotoxicity and carcinogenicity 

(if available) as well as the study count for each analog. 
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Any analogs of interest may be highlighted with the mouse and selected to display all the known 

database information about that compound. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabs at the top of the screen separate the data into a summary of all overall calls, and tabs 

specifically for genetox and carcinogenicity study and test data. Within these dialogs are 

summaries of all the studies and tests. Individual studies may be expanded into tests comprising 

them by selecting the “Test Studies” radio button. 

 

Lastly, reports containing data on the analogs may be created by clicking on the “Report” button. 

 

 
 

Further information is available for the companion databases as documentation accessible from 

the Help button on the main page of the Model Applier. 
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C-8.  The Regulatory Submission Tool 
 

In the ICH M7 guidance “Assessment and control of DNA reactive (mutagenic) impurities in 

pharmaceuticals to limit potential carcinogenic risk” the purpose is stated as: 

“… to provide a practical framework that is applicable to the identification, 

categorization, qualification, and control of these mutagenic impurities to limit 

potential carcinogenic risk.” [30] 

 

All actual and potential impurities or degradation products need to be identified and then a 

subsequent hazard assessment performed.  In the absence of available laboratory data (e.g. rodent 

carcinogenicity study or a bacterial mutagenesis study) an in silico analysis is permitted to assign 

compounds certain to classes. These results can be supplemented with an expert opinion [31]. 

 

Leadscope has published a standard operating procedure (SOP) to complete an ICH M7 

compliant in silico assessment to include in a regulatory submission - including accompanying 

expert opinions. [32]. This SOP is implemented in the Leadscope Model Applier and Leadscope 

Client as a “Submission tool” (version 2) for ICH M7 that applies the defined process in a 

consistent manner. The software integrates tools, databases, alerts and statistical models using a 

step-by-step wizard to generate the necessary submission assessment. These integrated tools 

perform a search over public literature and on-line databases, integrate proprietary information, 

and execute the necessary in silico prediction methodologies. The tool rapidly generates expert 

opinions and documents any necessary risk characterization and controls in a consistent and 

complete manner to be included as part of a regulatory submission. The use of a standardized 

reporting format facilitates review by both industrial sponsors and regulatory authorities.  

 

For further documentation on the use of the submission tool see the accompanying document: ., 

Amberg, et. al., Principles and procedures for implementation of ICH M7 recommended (Q)SAR 

analyses ”, Regulatory Toxicology and Pharmacology, 77 (2016) 13-24 and the available online 

webinars. 

   

http://www.sciencedirect.com/science/article/pii/S0273230016300277
http://www.sciencedirect.com/science/article/pii/S0273230016300277
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Appendix A. Common Organic and Inorganic Salts 
 

The following tables describe the organic and inorganic salts that Leadscope uses to identify parent compounds, 

along with all amino acids and single inorganic salt fragments: 

 

Table 1.  Common Organic Salts 
 

Common 

Organic Salts  Systematic Name 
CAS Registry 

Number 
Acetate Acetic acid 64-19-7 

Aceturate N-Acetyl-Glycine 543-24-8 

Amsonate 

2,2’-(1,2-ethenediyl)bis[5-

amino-]Benzenesulfonic acid 81-11-8 

Armstrong's acid 1,5-Napthalenedisulfonic 81-04-9 

Ascorbate D-Ascorbic acid 10504-35-5 

Benzoate Benzoic acid 65-85-0 

Besylate Benzenesulfonic acid 98-11-3 

Brucine 

Strychnidin-10-one,2,3-

dimethoxy- 357-57-3 

Butyrate Butanoic acid 107-92-6 

Camsylate 

7,7-Dimethyl-2-oxo-

bicyclo[2.2.1]heptane-1-

methanesulfonic acid 3144-16-9 

Caproate Hexanoic acid 142-62-1 

Carbamate Carbamic acid 463-77-4 

Carbanilate Phenyl-Carbamic acid 501-82-6 

Cinchonidine 

2-Quinuclidinemethanol,alpha-

4-quinolyl-5-vinyl-(-) 485-71-2 

Cinchonine 

2-Quinuclidinemethanol,alpha-

4-quinolyl-5-vinyl-(+) 118-10-5 

Cinnamate 3-phenyl-2-Propenoic acid 621-82-9 

Citrate 

2-hydroxy-1,2,3-

Propanetricarboxylic acid 77-92-9 

Clofibrate 

2-(4-chlorophenoxy)-2-methyl-

Propanoic acid 882-09-7 

Cyclamate cyclohexyl-Sulfamic acid 100-88-9 

Cyclohexanamine Hexahydrobenzenamine 108-91-8 

Cypionate Cyclopentanepropanoic acid 140-77-2 

Decanoate Decanoic acid 334-48-5 

Diethanolamine Ethanol, 2,2’-iminobis-  111-42-2 

Diethylamine N-ethylethanamine 109-89-7 
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Common 

Organic Salts  Systematic Name 
CAS Registry 

Number 
Dimethylamine Methanamine, N-methyl- 124-40-3 

Diphenylacetic acid 

Benzeneacetic acid, 

alphaphenyl- 117-00-8 

Edetate  

N,N’-1,2-ethanediylbis[N-

(carboxy-methyl)-Glycine 60-00-4 

Edisylate 1,2-Ethanedisulfonic acid 110-04-3 

Enanthate Heptanoic acid 111-14-8 

Ephedrine 

Benzenemethanol, alpha-(1-

(methylamino)ethyl)- 299-42-3 

Estolate Dodecyl sulfate (mono salt) 151-41-7 

Esylate Ethanesulfonic acid 594-45-6 

Ethanol Ethyl Alcohol 64-17-5 

Ethanolamine Ethanol, 2-amino- 141-43-5 

Formate Hydrogencarboxylic acid 64-18-6 

Fumarate 2-Butenedioic acid (2E) 110-17-8 

Gluceptate D-glycero-D-gulo-Heptonic acid 87-74-1 

Gluconate D-Gluconic acid 133-42-6 

Glucose Glucose 50-99-7 

Glutamate L-Glutamic acid 617-65-2 

Glycinate Aminoacetic acid 56-40-6 

Glycolate Hydroxyacetic Acid 79-14-1 

Guanidine Guanidine  113-00-8 

Hexanoic acid Hexanoic acid  142-62-1 

Hippurate N-benzoyl-Glycine 495-69-2 

Isethionate  2-hydroxy-Ethanesulfonic acid 107-36-8 

Isopropylamine 2-Propanamine 75-31-0 

Lactate 2-Hydroxy-Propanoic acid 50-21-5 

Lactobionate 

4-O-ß-D-galactopyranosyl-D-

Gluconic acid 96-82-2 

Laurate  Dodecanoic acid  143-07-7 

Maleate  2-Butenedioic acid (2Z) 110-16-7 

Malonic acid Propanedioic acid 141-82-2 

Mandelate a-hydroxy-Benzeneacetic acid 90-64-2 

Mesylate Methanesulfonic acid 75-75-2 

Methiodide Iodomethane 74-88-4 

Methyl Bromide Bromomethane 74-83-9 

Methyl carbamate Carbamic acid methyl ester 598-55-0 

Monomethyl sulfate Sulfuric acid monomethyl ester 75-93-4 

Morpholine  Tetrahydro-2H-1,4-oxazine 110-91-8 

Mucate  Galactaric acid 526-99-8 
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Common 

Organic Salts  Systematic Name 
CAS Registry 

Number 
Myristate Tetradecanoic acid 544-63-8 

Naphthalenesulfonic 

acid 1-Naphthalenesulfonic acid 85-47-2 

Napthylethanamine 1-Naphthaleneethanamine  4735-50-6 

Nicotinate 3-Pyridinecarboxylic acid 59-67-6 

Oleate 9-Octadecenoic acid (9Z) 112-80-1 

Oxalate Ethanedioic acid 144-62-7 

Palmitate Hexadecanoic acid 57-10-3 

Pamoate 

4,4’-methylenebis[3-hydroxy-2-

Naphthalenecarboxylic acid 130-85-8 

Pentetate 

N,N’-bis[2-

[bis(carboxymethyl)amino]-

Glycine 67-43-6 

Phenpropinate Phenylpropanoic acid  501-52-0 

Phenylacetate Phenylacetic acid  103-82-2 

Phosphanilate 

(4-aminophenyl)-Phosphonic 

acid 5337-17-7 

Phthalate 1,2-Benzenedicarboxylic acid 88-99-3 

Picrate 2,4,6-trinitro-Phenol 88-89-1 

Picric acid 2,4,6-Trinitrophenol 29663-11-4 

Piperazine Piperazine 110-82-2 

Piperidine Hexahydropyridine  110-89-4 

Pivalate 2,2-dimethyl-Propanoic acid 75-98-9 

p-Nitrobenzoic acid 4-Nitrobenzoic acid 62-23-7 

Probenate 

4-[(dipropylamino)sulfonyl]-

Benzoic acid 57-66-9 

Propionate Propanoic acid 79-09-4 

p-Salicylic acid 4-Hydroxybenzoic acid 99-96-7 

Pyridine Azabenzene 110-86-1 

Pyrrolidine  Pyrrolidine 123-75-1 

Salicylate 2-hydroxy-Benzoic acid 69-72-7 

Sorbic acid 2,4-Hexadienoic acid 110-44-1 

Stearate Octadecanoic acid 57-11-4 

Stinoprate N-Acetyl-L-cysteine 616-91-1 

Suberic acid Octanedioic acid 505-48-6 

Succinate Butanedioic acid 110-15-6 

Sulfamate Aminosulfonic acid 5329-14-6 

Tartrate 2,3-dihydroxy-Butanedioic acid 87-69-4 

Terephthalate 1,4-Benzenedicarboxylic acid 100-21-0 

Tetrabutanaminium 

1-Butanaminium, 

N,N,Ntributyl- 10549-76-5 
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Common 

Organic Salts  Systematic Name 
CAS Registry 

Number 
Tetraethanaminium Ethanaminium, N,N,N-triethyl- 66-40-0 

Tosylate 4-methylbenzenesulfonic acid 104-15-4 

Triethanamine  Ethanamine, N,N-diethyl-  121-44-8 

Triethanolamine  2,2’,2’’-Nitrilotriethanol  102-71-6 

Trifluoro acetate Trifluoroacetic Acid 76-05-1 

Trimethyl acetate Trimethyl acetic acid 75-98-9 

Tropate 

3-Hydroxy-2-phenylpropanoic 

acid 529-64-6 

Undecylenate 10-Undecenoic acid 112-38-9 

Urea Carbamimidic acid 57-13-6 

Valerate Pentanoic acid 109-52-4 

Xanthanoic acid Xanthene-9-carboxylic acid 82-07-5 
 

TABLE 2.  Common Inorganic Salts 
 

Common 

Inorganic Salts  

CAS Registry 

Number 
Aluminum (III) salt  7429-90-5 

Ammonium salt  14798-03-9 

Antimony salt  7440-36-0 

Barium (II) salt  7440-39-3 

Beryllium salt  7440-41-7 

Bismuth(III) salt  

Borate  11113-50-1 

Bromide  24959-67-9 

Cadmium (II) salt  7440-43-9 

Calcium(II) salt  7440-70-2 

Carbonate  463-79-6 

Cerium salt  7440-45-1 

Cerium (III) salt  

Cerium (IV) salt  

Cesium salt  7440-46-2 

Chlorate  7790-93-4 

Chloride  16887-00-6 

Chlorite  7790-93-4 

Chromium(III) salt  7440-47-3 

Cobalt salt  7440-48-4 

Cobalt(II) salt  7440-48-4 

Cobalt(III) salt  7440-48-4 

Copper salt  7440-50-8 

Copper(I) salt  7440-50-8 
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Common 

Inorganic Salts  

CAS Registry 

Number 
Copper(II) salt  7440-50-8 

Diphosphate  14000-31-8 

Dysprosium(III) salt  7429-91-6 

Erbium(III) salt  7440-52-0 

Europium(III) salt  7440-53-1 

Tetrafluoroborate  16872-11-0 

Gadolinium(III) salt  7440-54-2 

Gallium(III) salt  7440-55-3 

Hexafluorophosphate  16919-18-9 

Holmium(III) salt  7440-60-0 

Hydrate   

Hydriodide  10034-85-2 

Hydrobromide  10035-10-6 

Hydrochloride  7647-01-0 

Hydrofluoride  7664-39-3 

Hydrogen cyanide  74-90-8 

Hydrogen phosphate  

Hydrogen sulfide  

Hypochlorite  14380-61-1 

Indium(III) salt  7440-74-6 

Iodide  20461-54-5 

Iron salt  7439-89-6 

Iron(II) salt  7439-89-6 

Iron(III) salt  7439-89-6 

Lanthanum(III) salt  7439-91-0 

Lead salt  7439-92-1 

Lead(II) salt  7439-92-1 

Lead(IV) salt  7439-92-1 

Lithium salt  7439-93-2 

Lutetium(III) salt  7439-94-3 

Magnesium(II) salt  7439-95-4 

Manganese(II) salt  7439-95-4 

Mercury salt  7439-97-6 

Mercury(I) salt  7439-97-6 

Mercury(II) salt  7439-97-6 

Neodymium(III) salt  7440-00-8 

Nickel(II) salt  7440-02-0 

Nitrate  7697-37-2 

Nitrite  7782-77-6 

Palladium(II) salt  
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Common 

Inorganic Salts  

CAS Registry 

Number 
Perchlorate  7601-90-3 

Phosphate  14265-44-2 

Phosphonic Acid  13598-36-2 

Plutonium(VI) salt  

Potassium salt  

Praseodymium(III) 

salt  

7440-10-0 

Rhodium(II) salt  7440-16-6 

Rubidium salt  7440-17-7 

Ruthenium salt  7440-18-8 

Samarium(III) salt  7440-19-9 

Selenium(II) salt  7782-49-2 

Silicate  7699-41-4 

Silver salt  7440-22-4 

Sodium salt  7440-23-5 

Strontium salt  7440-24-6 

Sulfate  7664-93-9 

Sulfite  14265-45-3 

Sulfurous acid  7782-99-2 

Terbium(III) salt  7440-27-9 

Thallium salt  7440-28-0 

Thallium(I) salt  7440-28-0 

Thallium(III) salt  7440-28-0 

Thiosulfate  

Thorium salt  7440-29-1 

Thulium(III) salt  7440-30-4 

Tin salt  7440-31-5 

Tin(II) salt  7440-31-5 

Tin(IV) salt  7440-31-5 

Titanium(IV) salt  7440-32-6 

Uranium salt  7440-61-1 

Vanadium salt  7440-62-2 

Ytterbium(III) salt  7440-64-4 

Yttrium(III) salt  7440-65-5 

Zinc salt  7440-66-6 

Zinc(II) salt  7440-66-6 

Zirconium(IV) salt  7440-67-7 
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